

Invasive alien species: Why is gene drive being considered?

Owain Edwards

Group Leader, *Environmental & Synthetic Genomics*, CSIRO Land & Water, Perth, Australia Domain Leader, *Environment & Biocontrol*, CSIRO Synthetic Biology Future Science Platform

CSIRO SYNTHETIC BIOLOGY FUTURE SCIENCE PLATFORM

Invasive species in Australia

Fox

Rabbit

Feral Cat

Cane Toad

Threats to endemic fauna in Australia

Chemical control

Mouse Plagues

CSIRO

Chemical control

Eastern Quoll

Australia news NSW plan to use 'napalm' poison to control mouse plague rejected over fears for wildlife

Powerful Owl

Biological control

Year

Genetic control

Courtesy of Maciej Maselko (see Maselko et al. Nature Comms 11: 1-7)

Self-selecting incompatible male system

Inheritance of genetic control without gene drive

(Courtesy of Paul Thomas, U. Adelaide)

Gene drives increase in frequency by biasing inheritance

(Courtesy of Paul Thomas, U. Adelaide)

Homing Gene Drive Mechanism

Courtesy of Kevin Esvelt, MIT Media Lab See Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) *eLife*

Cas9

Sex distortion drive: X-chromosome shredder

Suppression Drives

nature biotechnology

A CRISPR–Cas9 gene drive targeting *doublesex* causes complete population suppression in caged *Anopheles gambiae* mosquitoes

Kyros Kyrou^{1,2}, Andrew M Hammond^{1,2}, Roberto Galizi¹, Nace Kranjc¹, Austin Burt¹, Andrea K Beaghton¹, Tony Nolan¹, & Andrea Crisanti¹

Mouse Plagues

Carp

Spotted-wing Drosophila

Replacement Drives

Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles stephensi*

Valentino M. Gantz^{a,1}, Nijole Jasinskiene^{b,1}, Olga Tatarenkova^b, Aniko Fazekas^b, Vanessa M. Macias^b, Ethan Bier^{a,2}, and Anthony A. James^{b,c,2}

*Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349; *Department of Molecular I Biochemistry, University of California, Irvine, CA 92697-3900; and *Department of Microbiology and Molecular Genetics, School of Me California, Irvine, CA 92697-4500

Next-generation gene drive for population modification of the malaria vector mosquito, *Anopheles gambiae*

Rebeca Carballar-Lejarazú^a, Christian Ogaugwu^{a,b}, Taylor Tushar^a, Adam Kelsey^a, Thai Binh Pham^a, Jazmin Murphy^a, Hanno Schmidt^c, Yoosook Lee^c, Gregory C. Lanzaro^c, and Anthony A. James^{a,d,1}

[®]Department of Microbiology & Molecular Genetics, University of California, Irvine; CA 92697-4025; [®]Department of Animal and Environmental Biology, Federal University Oye-Ekiti 371010, Ekiti State, Nigeria; [®]Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis; CA 95616; and [®]Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-4025;

Cane Toad

Advantages of gene drives

Posted on 5 June 2021 at 11:42AM by **PETA Australia**

There *is* a better solution than just slaughtering mice only to see the population rebound in future years and the crisis recur.

The money will fund a three-year programme of genetic biocontrol research, led by the University of Adelaide, CSIRO, and the Centre for Invasive Species Solutions, to identify fast-acting gene drives designed to spread an inherited characteristic through a population.

Limitations of gene drives

- Speed of control dependent on generation time.
- Released individuals must be reproductively competitive.

Status of gene drive research

- Functional gene drives have only ever been tested in insects in laboratories or specialized containment facilities, first in Drosophila then later against mosquitoes.
 - None have yet been approved for release into the environment.
- In vertebrates, no functional gene drives have as of yet been developed.
 - All current gene drive research in vertebrates is being conducted in model laboratory animals, either in mice or in zebrafish.

Takeaways

- Gene drives should be considered as part of a portfolio of management approaches for IAS, together with existing chemical, biological and genetic control options
- Gene drives provide an option to spread genetic control technologies that would otherwise be infeasible because of scale
- Gene drives may increase the risk of unintended consequences, which can be mitigated using technologies that make them self-limiting in space and/or time

Acknowledgements:

Maciej Maselko

CSIRO SYNTHETIC BIOLOGY FUTURE SCIENCE PLATFORM

www.csiro.au

